Massive MIMO Map Feb 2018 450

Dark blue: Building actively: China Mobile, Softbank Japan, Bharti India, Jio India, Vodafone India, Singtel, Globe Phillippines, Sprint USA

Medium: Announced: DT, FT/Orange, BT, Qatar, Verizon USA, T-Mobile Netherlands, Telekom South Africa  

Light blue: Talking: Vodafone England, Vodafone Turkey,
Safaricom Kenya, 

Massive MIMO is the next great step in mobile networks. Huang Yuhong of China Mobile and Hidebumi Kitahara of SoftBank are deploying hundreds of nodes and reporting performance improvements of 2X to 10X. Sprint in the U.S. and 3 in Austria are firmly committed. Gig LTE - 4x4 MIMO, 3/4 band aggregation, and 256 QAM is spreading rapidly in 2017; the next step will be the 64+ antennas and beamforming of Massive MIMO, some at millimeter wave. I had a chance to ask some experts a few questions so put together these. Others welcome.

in 2018-2019, what's a smart Massive MIMO deployment strategy for a network with growing traffic? 

Read more ...

OttendorferSome places will only be 2-5X. With hundreds and soon thousands of systems in Japan and China, there's no doubt the technology works. SoftBank and China Mobile were first in the world to deploy, Now, Sprint, AT&T, and Verizon are discussing when, not whether. Since Sprint is owned by SoftBank, it was easy to predict they would join in. Mike Dano at Fierce had this story a month ago; now Ottendorfer has filled in the details.

"Massive MIMO β€“ massive volumes of input and output streams – might sound like geek talk – it’s really just the ability with massive computing power to add massive numbers of antennas elements in the antennas on our cell sites. And 3D beamforming supported by Massive MIMO is simply more cell signals moving in both horizontal and vertical directions."

Gig LTE & Massive MIMO will raise capacity on U.S. networks at least 4X and more likely 7-15X in the next few years.

Read more ...

Blue Danube antenna 200Field trials underway. mmWave is exciting, drawing headlines, and certainly will be crucial one day. Massive MIMO is here today, deploying by the thousands at China Mobile and Softbank Japan. Verizon's Shamsundar told me last year, "We must have Massive MIMO." The early generation of M-MIMO and mmWave are showing 3X to 5X performance improvements. 50X improvements will be possible, although no one believes that other than a few engineers.

Now, AT&T has confirmed they are in field trials. AT&T has invested in Blue Danube, whose 96 antenna BeamCraft 500, right, is about 5 feet tall. It produced a 2X to 5X improvement in a selected high traffic area. These results are yet more proof of the potency of Massive MIMO. ZTE and Huawei are seeing 3X to 10X improvements from full Massive MIMO systems at Softbank and China Mobile. With eight antennas, Huawei is delivering 1.5X in Kuwait. 

Read more ...

Austria's Mozart 200"We are planning commercial deployment of Massive MIMO sometime in 2017 (we cannot communicate definite dates yet)." Tom Tesch, Hutchison Drei Austria. Three years ago, Stanford Professor Paulraj told me Massive MIMO was going to produce an enormous capacity boost. It's now coming out of the labs. Every network architect in the world is watching the Massive MIMO at Softbank in Japan and China Mobile. They are getting between 3X and 10X more capacity in the same amount of spectrum and are ordering thousands of systems. I've received so many reports of "tests" I ignore them. I'm now getting committed builds, including Sprint in the U.S.

The press release said "tests" but company spokesman Tesch confirmed to me the decision is made to deploy.

Read more ...

Marzetta book 180This newly published book belongs close at hand for every engineer in advanced wireless. Marzetta invented it at Bell Labs, so I expected a fine book. Marzetta and co-authors Larsson, Yang, and Ngo did an extraordinary job. The book is admirably clear, short, and definitive. They answer the key questions: what it is, why it works, and how to design the systems. The last chapter reviews the problems still to be solved. It's only 160 pages (and 50 more in appendices) but all the main topics are addressed. For depth on a particular topic, the authors point you to the original research. The book is written for engineers; some parts are hard going for a layman. 

The Resources list at the end references the seminal works by Paulraj, Foschini, Alamouti, Goldsmith, and the authors, as well as the 150 other works that have defined the field.

Read more ...

4x4 256 Qam 180Just a few consumer tests but they look good. Gig wireless (shared) is behind schedule; Telstra in Australia and SKT in Korea thought they would have it for customers before the end of 2016 but they haven't made it by Xmas. Pieces of the necessary technology are deploying widely. T-Mobile in many places is using four antenna MIMO and 256 QAM advanced coding. They are not bonding 4 channels, which would take peaks to around a gigabit. Sprint is widely bonding three channels and will go to four channels (80 MHz.)

Tyrone Beckwith at Tech Life Channel measures 40-50 megabits download (right), two or there times more that without those two improvements (left.) Larger picture below. That's much less than the 200-300 megabits peak, shared, from 20 MHz at the cell tower. Few users get the full 200+ most of the time. However, many will get much higher speeds than they are today. 

Most users will not get close to the peak speed.

Read more ...

The Site for Massive 230
dave ask

Massive MIMO is rapidly deploying across the world; Soon, I'll be adding many more countries to the Massive MIMO map. On average, adding 64 or 128 antennas triples the performance of the cell site at moderate cost. Ericsson, Huawei, and ZTE are shipping by the thousands.

Being a reporter is a great job for a geek. I'm not an engineer but I've learned from some of the best, including the primary inventors of DSL, cable modems, MIMO, Massive MIMO, and now 5G mmWave. Since 1999, I've done my best to get closer to the truth about broadband.

Send questions and news to Dave Burstein, Editor.